当前位置: 首页 > 人才培养 > 团队队伍 > 正文
庄超群
阅读次数:     发布时间:2024-10-16

基本信息

姓 名:

庄超群

性 别:

出生年月:

1992.05

最高学位:

博士

职 称:

教授

导师类型:

博士生导师

职 务:


工作地点:

江浦校区天工楼305D

联系方式:

zhuangcq@njtech.edu.cn ; cz378@cam.ac.uk

研究方向:

智慧城市与绿色建筑、 建筑能源数字孪生系统、   高科技精密环境控制技术、 楼宇智能化系统设计与控制

教育背景

2016 - 2020 香港理工大学 屋宇设备工程 博士

2013 - 2016 重庆大学 建筑与土木工程 硕士

2009 - 2013 重庆大学 建筑环境与设备工程 学士

工作经历

2024 ~ bwin必赢   教授

剑桥大学 Visiting academic fellow

2021 ~ 2024 剑桥大学/ The Alan Turing Institute(英国国家人工智能研究院)博士后

学术兼职情况

国际期刊Building Simulation, Energy   Reviews 青年编委

国际学术组织 IBPSA-EnglandIAQVEC会员

国际期刊 Nature Cities, Nature CommunicationsNano   Energy 等审稿人

承担科研项目情况

2023-2024 剑桥大学 三一学院零碳咨询项目 主持

2023-2024 英国基础设施、城市与能源博士后发展中心博士后基金    主持

2022-2023 英国图灵博士后研究基金   主持

2021-2023英国科研与创新署 国家数字孪生系统开发   主研

2021英国科研与创新署 建筑环境数字孪生系统研发 主研

2019-2022 香港政府研究资助委员会 恒温恒湿建筑楼宇智能系统集成设计及最优控制 主研


代表性论文与著作

研究方向为建筑环境与能源技术、人工智能、控制工程的多学科交叉领域,重点包括:智慧城市与绿色建筑、建筑能源数字孪生系统、高科技精密环境控制技术。部分代表性论文如下:

Zhuang C., Choudhary R.,   Mavrogianni A. (2023). Uncertainty-based optimal energy retrofit methodology   for building heat electrification with enhanced energy flexibility and   climate adaptability. Applied Energy, 341: 121111. https://doi.org/10.1016/j.apenergy.2023.121111.

Zhuang C., Choudhary R.,   Mavrogianni A. (2022).   Probabilistic occupancy forecasting for   risk-aware optimal ventilation through autoencoder Bayesian deep neural   networks. Building and Environment, 219: 109207. https://doi.org/10.1016/j.buildenv.2022.109207.

Zhuang C., Shan K, Wang S. (2021). Coordinated   demand-controlled ventilation strategy for energy-efficient operation in   multi-zone cleanroom air-conditioning systems. Building and Environment,   191: 107588. https://doi.org/10.1016/j.buildenv.2021.107588.

Zhuang C., Gao Y, Zhao Y.,   Levinson R., Heiselberg P., Wang Z., Guo R. (2021). Potential benefits and   optimization of cool-coated office buildings: A case study in Chongqing,   China. Energy, 226: 120373. https://doi.org/10.1016/j.energy.2021.120373.

Zhuang C., Wang S. and Shan K. (2020). A risk-based   robust optimal chiller sequencing control strategy for energy-efficient   operation considering measurement uncertainties. Applied Energy, 280:   115983. https://doi.org/10.1016/j.apenergy.2020.115983.

Zhuang C., and Wang S. (2020). An adaptive   full-range decoupled ventilation strategy for buildings and spaces requiring   strict humidity control and its applications in different climatic   conditions. Sustainable Cities and Society, 52: 101838. https://doi.org/10.1016/j.scs.2019.101838.

Zhuang C. and Wang S. (2020). Uncertainty-based   robust optimal design of cleanroom air-conditioning systems considering   life-cycle performance. Indoor and Built Environment, 29 (9):   1214-1226. https://doi.org/10.1177/1420326X19899442.

Zhuang C. and Wang S. (2020).   Risk-based online robust optimal control of air-conditioning systems for   buildings requiring strict humidity control considering measurement   uncertainties. Applied Energy, 261: 114451. https://doi.org/10.1016/j.apenergy.2019.114451.

Zhuang C., Wang S., Shan K.   (2019). Probabilistic optimal design of cleanroom air-conditioning systems   facilitating optimal ventilation control under uncertainties. Applied   Energy, 253: 113576. https://doi.org/10.1016/j.apenergy.2019.113576.

Zhuang C., Wang S., Shan K.   (2019). Adaptive full-range decoupled ventilation strategy and   air-conditioning systems for cleanrooms and buildings requiring strict   humidity control and their performance evaluation. Energy,   168:883-896. https://doi.org/10.1016/j.energy.2018.11.147.

Shi D., Gao Y., Zeng P.,   Li B., Shen P., Zhuang C. (2022). Climate adaptive optimization of   green roofs and natural night ventilation for lifespan energy performance   improvement in office buildings. Building and Environment, 223:109505.   https://doi.org/10.1016/j.buildenv.2022.109505.

Guo R., Gao Y., Zhuang   C., Heiselberg P., Levinson R., Zhao X., Shi D. (2020). Optimization of   cool roof and night ventilation in office buildings: A case study in Xiamen,   China. Renewable Energy, 147: 2279-2294. https://doi.org/10.1016/j.renene.2019.10.032.


奖励荣誉

入选国家海外高层次人才计划青年项目 (2023)

第十一届供热、通风与空调国际会议大会(ISHVAC 2019) 最佳论文奖

招收研究生情况:

本课题组长期招收博士、硕士研究生,十分欢迎建筑环境与能源应用工程、能源动力、数据科学、建筑电气与自动化等专业踏实上进的同学加入,也欢迎本科生进课题组进行科研训练。

课题组与英国剑桥大学、萨里大学、伯明翰大学、拉夫堡大学、伦敦大学学院等研究机构长期开展项目合作,优秀研究生可推荐至上述单位交流。